Math	432:	Set	Theory	and	Topology
------	------	-----	--------	-----	----------

```
Homework 4
```

Due: Feb 28 (Thu)

Other (mandatory) exercises.

- 1. Below, for the questions asking for examples, make sure your examples are different from those in the notes ("A quick introduction to basic set theory").
 - (a) Write down the ordinal 5 (the 6^{th} least ordinal) explicitly.
 - (b) Give examples A, B of transitive sets such that the relation \in on A is not an ordering, but on B it is.
 - (c) Give an example of a non-transitive set.
- 2. Show that the powerset of a transitive set is transitive.
- **3.** Prove that there does **not** exist a set that contains all of the ordinal, i.e., there is no set **Ord** that is equal to $\{x : x \text{ is an ordinal}\}$. You may **not** use Foundation, Powerset, or Axiom of Choice, just use the properties of ordinals proved in class.
- **4.** Prove that for an ordinal α , sup $\alpha \in \alpha$ if and only if α is a successor ordinal.
- **5.** Let C be a nonempty set.
 - (a) Prove that there is a set, denoted by $\cap C$, that is equal to $\{x : \forall A \in C \ (x \in A)\}$.
 - (b) Prove that if C is a set of ordinals, then $\cap C$ is an ordinal and moreover, it is the least ordinal in C, i.e., $\min C = \bigcap C$.
- 6. The following basic statements about ordinals were proven in class. Rewrite their proofs in your own words and be ready to present in the problem session.

Let α, β be ordinals.

- (a) Prove directly from the definition of an ordinal (without using any ZFC axioms, especially Foundation) that $\alpha \notin \alpha$.
- (b) Prove that for any $y \in \alpha$, $y = \alpha_{< y}$.
- (c) Conclude that if $\alpha \neq \emptyset$, then the least element of α is \emptyset . We denote $0 := \emptyset$.
- (d) Prove that every $y \in \alpha$ is itself an ordinal.
- (e) Prove that \in is a total order on ordinals, i.e. exactly one of the following holds: either $\alpha = \beta$, or $\alpha \in \beta$, or $\beta \in \alpha$.
- (f) Prove that if $\alpha \subseteq \beta$, then either $\alpha = \beta$ or $\alpha \in \beta$.
- (g) Prove that for every formula $\varphi(x)$, if there is an ordinal α for which $\varphi(\alpha)$ holds, then there is a least such ordinal.
- (h) Prove that a transitive set of ordinals is itself an ordinal.
- 7. Let α denote a natural number and recall that \mathbb{N} denotes the set of all natural numbers.
 - (a) Prove that any $x \in \alpha$ is itself a natural number.

- (b) Prove that $\alpha + 1$ is a natural number. Deduce that \mathbb{N} is an inductive set.
- (c) Prove that \mathbb{N} is the \subseteq -least inductive set, i.e., for any inductive set I, $\mathbb{N} \subseteq I$.
- (d) Deduce the usual induction theorem: Suppose that $P\subseteq \mathbb{N}$ is such that
 - (i) $0 \in P$ and
 - (ii) for any $n \in \mathbb{N}$, $n \in P \Rightarrow n+1 \in P$.

Then $P = \mathbb{N}$.